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SUMMARY

The meteoroid environment is of considerable scienti-
fic and aerospace interest. With the current interest in manned
interplanetary missions with aphelion inside the asteroidal
belt, an estimation of the deep space meteoroid environment is
necessary. Inasmuch as inadequate information exists regarding
the number density of meteoroids in the asteroidal belt, this
study was undertaken in an effort to make a constribution in
this direction.

More specifically, the physical significance of popu-
lation index type particle distributions is examined. These are
distributions where the number density f(m)dm of particles per
unit volume with a mass in the range m tom + dm is given by

-0

f(m)dm = Am dm (S-1)

where A and o are constants, the latter known as the populetion
index.

Because of its simplicity, eqg. S-1 is very useful
since if f(m) is known at two mass values, then both A and a are
defined and extrapolation is possible. In the absence, however,
of a priori physical reason for the existence of populations of
the form eq. S-1, such extrapolations are questionable at best.
The purpose of the present study is to discuss a particular cir-
cumstance under which a population of meteorolds is correctly
described by eq. S-1, and to compare the results with available
experiment.

The following equation constitutes the formulation of
the physical model considered, and will be called the collision
equation:
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Summary (cont'd)

time rate of change in the number density of
particles having a mass in the range m to =
m + dm

number of particles removed (per unit time)
from the mass range m to m + dm due to the
erosive influence of collisions with compara-
tively small particles¥

(8-2)

number of particles removed (per unit time)
from the mass range m to m + dm due to ca-
- | tastrophic collisions (these result in the
complete disruption of the "test" objects
with masses in the range m to m + dm)

number of particles, in the mass range m to

m + dm, created (per unit time) due to colli-
sional fragmentation between objects with
sufficiently large masses

It is assumed that the population has reached a
steady-state value, i.e., the time derivative term on the left
hand side of eq. S-2 is zero, or very small. It is then shown,
in the text, that a solution of the form eq. S-1 satisfies the
collision equation provided that the population index o 1is
given by

1.75 < a < 2 (8-3)
in the mass range

ur'' << m << AM_/T! (3-4)

¥This term also includes the converse effect of slightly
larger particles eroding into the mass range m to m + dm.
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Summary (cont'd)

where yu is the mass of the smallest object not blown away by
radiation pressure, ul'' is the largest mass completely shatter-
ed by a projectile with mass p and AM_/T' 1s the mass of the

largest fragment when the largest mass in the sample, M_, 1s
shattered catastrophically.

The collision equation eq. S-2 cannot be satisfied by
trial solutions of the form eq. S-1 for values of o beyond the
limits given by eq. S-3. For a > 2 erosion by the smallest par-
ticles dominates and for o < 1.75 collision products from the
most massive objects cause evolution of the mass distribution
with time.

Comparison of this result with observational infor-
mation regarding the near earth environment is given in Fig. 1.
I€ can be seen, from this figure, that the gross features of
the distribution are reproduced by the present model.

The distribution of asteroids catalogued by Kuiper
et al is given in Fig. 2. A least squares fit to the number
density of the observed asteroids gives

a = 1.80 + .04 (S-5)

in good agreement with our result, eq. S-3. Comparison with the
distribution of lunar craters and meteorites is also found to be
favorable.

It therefore appears that an extrapolation of the num-
ber density of asteroids into mass ranges of much smaller objects
is a reasonable first approximation to their distribution. This
extrapolation is sketched in the summary chart Fig. S-1. It can
be seen, from the figure, that the number density of asteroidal
debris as obtained by the present study is considerably lower
than the NAA engineering model.



- 0
-1
-2
-3 \\
" \\
Y NASA N\
-/ | MODEL* \ x
: \( NAA ENGINEERING MODEL*

. N

N,

-7 N\
_ | ) \\
= -9 AN
o { \
=
= -10 2 AN
x \
& -1t SN
w ] \ CRITICAL FLUX
= FOR MARS FLY-
< -12 AN sg mgsuou
3 1 MODUL
§§ L ._.._..__._.._.__.__.__.__.._.§§\<:: ‘t:ﬁkiz.__.if-._.__ —_——
s -13
S \ \
1y \\

PHOTOGRAPHIC METEQRS
| (DOHNANY|, 1966)*
-15

N

LOG PARTICLE MASS IN K@

FIGURE S-I

-16 =
~ PRESENT
RESULTS** N
-17
* NEAR EARTH ENVIRONMENT
-18 ** APPLICABLE TO MARS FLY-BY MISSION
MODULE IN THE ASTEROIDAL BELT.
-19
-20
il <10 -9 -8 -7 -6 -5 -4 -3 -2 0 I 2 3



G GE S N OGN BN BE BN N G G0 S ) Gy &5 BN aE =S e

BELLCOMM, INC.
ABSTRACT

A collisional model of meteoroids is formulated. An
equation is derived which describes the evolution of a system
of particles under the processes of particle destruction due
to collisions and particle creation due to fragmentation dur-
ing collisions. If the system of particles is assumed to have
reached steady-state conditions it is found that a particle

number density function of the simple form Am~% dm (m is parti-
cle mass, A and a are constants) satisfies the equation pro-

vided that o has a value in the range %(n + 5/3) < a < 2 where

n is a material parameter having a value of about 1.8. Compar-
ison with near earth meteoroid fluxes indicates that the gross
features of the observed distribution are reproduced by the
present model. Agreement is also found with the distribution
of the catalogued asteroids.
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COLLISIONAL MODEL OF METEOROIDS

1.0 INTRODUCTION

The distribution of interplanetary debris is of con-
siderable scientific and engineering interest. As the smallest
members of the solar system, these objects are of interest to
the astronomer and since they can collide with a spacecraft,
they are of equally strong interest to the aerospace engineer,
With the current interest in a manned Mars flyby mission which
is planned to enter the asteroidal belt at aphelion, the esti-
mation of the distribution of debris in the asteroidal belt is
one of the most important environmental problems to be solved.
This paper treats theoretically the collective dynamical pro-
perties of a population of debris particles in orbit around
the sun undergoing mutual collisions and subsequent fragmenta-
tion; a physical basis for estimating particle distributions is
therefore established. Application of the present model to the
flux of meteoroids near earth serves as an independent check;
the gross features of the particle flux into the earth's atmo-
sphere are found to be reproduced with the present model.

Section 2 of this paper is a discussion of the frag-
mentation of rock during hypervelocity impact. A mathematical
formulation of the fragmentation process, based on results by
Gault, Shoemaker and Moore (1963) is developed.

The collision equation governing the dynamics of a
collection of particles undergoing mutual collisions and frag-
mentation is developed in Section 3. This is an integro dif-
ferential equation for the number density function of particles
having a mass in the range of m to m + dm.

In Section 4, a trial solution of a population index
form

-0

f(m)dm = Am =~ dm (1)

where f(m)dmis the number density function of particles per unit
volume having a mass in the range m to m + dm and o is the popu-
lation index, is then substituted into the collision equation.
It is found that a solution of this form (egq. 1) solves the col-
lision equation only if the latter has reached a steady-state
condition in time, i.e., when the particle removal rate equals
the particle creation rate.
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In Section 5, the results of Section 4 are compared
with the distribution of near earth meteoroids of presumably
cometary origin. It is found that the gross features of the
observed distribution are reproduced with the present model.

Section 6 is an application of the model for the esti-
mation of the number density of debris in the asteroidal belt.
In Section 7 agreement is sought and found between the solution
of the collision equation and the distribution of known aster-
oids. Comparison with the distribution of lunar craters and of
meteorites is also found to be favorable.

2.0 THE CRUSHING LAW

Interplanetary space contains a very large number of
objects having different masses and orbifs. These objects are
believed to frequently collide with each other inelastically.
When such a collision occurs at a sufficiently high relative
velocity, fragmentation results. In the present study, the
relative velocitilies will be comparable to those of dust parti-
cles in space traveling in different but intersecting orbits.
This means that the impact velocity will be of the order of
kilometers per second and, hence, sufficiently high to cause
fragmentation.

Regarding the mass distribution of fragments produced
during impact, the following type of crushing will be assumed:

g(m; M,M,)dm = c(M,M2)m‘n dm (2)

Here, g(m; M,M2)dm is the number of particles having a mass

between m and m + dm produced during the impact of a mass M
with another, larger mass M,. The coefficient C(M,M2) is a

function of the colliding masses and n is a constant.
We first consider the case when the target mass is

very great compared with the projectile particle, i.e.,
(M2/M) + o, This is the frequently considered problem of high

velocity impact into a semi-infinite target. The quantity g is
now a function of M and m only and eq. 2 becomes

g(m; M,)dm = C(M,~)m” " dm (2")

This particular crushing law for a semi-infinite target is
based on experiment (Gault, Shoemaker and Moore, 1963) and
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observation over a limited number of cases. Use of a particular
crushing law is one of the major assumptions in this paper.
However, since evidence supports a crushing law of the general
form of equation 2' during hypervelocity impact, it will be
adopted here to estimate the distribution of particles resulting
from inelastic collisions at orbital velocities.

In order to estimate C(M,») the following integral has
to be evaluated

My

M= m g(m; M,~)dm (3)
H

where Me is the total ejected mass, Mb is the largest and u the

smallest fragment produced; g(m; M,~) is given by eq. 2. Sub-
stitution of eq. 2' into eq. 3 and subsequent integration gives

(2-n)Me

Z - (%)
Mb2 no_ u2 n

C(M,») =

Gault, Shoemaker and Moore (1963) found that n is about 1.8; u
is a submicron particle (Gault and Heitowit, 1963) correspond-

ing to a mass of the order of lO_lu kg or smaller. In the pre-

sent treatment, the particle masses in the range of interest

will be very much larger than 10—14 kg; one therefore obtains

(since n < 2)
Mb >> u (5)

The denominator in equation 4 can, therefore, be
simplified and one obtains

C(M,=) = (2-n)M_M_""° (6)
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Both the total ejected mass Me and the largest frag-
ment Mb are functions of the mass M of the colliding particle
and will be assumed to have the form

M

e M << M2

(7)
M. = AM << M

where T and A are both functions of the impact velocity and
material properties of the target as well as the projectile
but not of their masses. M2 is the mass impacted by M and the

double inequality sign reflects the fact that the coefficients
I and A refer to a semi-infinite target. It can be seen from
eq. 7 that T is the total ejected mass per unit projectile

mass and A is the mass of the largest fragment per unit pro-
jectile mass.

The use of eq. 7 is based on results from hypervelo-
city experiments discussed by Gault et al (1963). These
authors find that the total ejected mass as well as the mass
of the largest fragment during hypervelocity cratering into
basalt is proportional to the projectile kinetic energy, and
hence, to the projectile mass. These experiments were conducted
at impact velocities over a range not exceeding 10 Km/sec and
over a range of projectile kinetic energies from 10 joules to

10” joules, approximately.

If

then eq. 7 breaks down because hypervelocity impact into a
relatively small target differs from the former (semi-infinite
target) situation since the shock formed during impact will be
reflected back toward the impact area rather than propagated
away to infinity (i.e., dissipated). This is particularly
significant for stones fracturing easily under tension. For
these objects, a mass

M, >> TM

2
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can still be completely shattered by the shock wave (generated
during the event) which is reflected at the free surfaces and
propagated Inward as a tension wave.

In the absence of sufficient factual information de-

scribing this catastrophic process, the following will be
assumed:

(i) the largest mass M2 completely shattered by M

is given by

= 1
M2 'M
with M =M+ M. and T' > T
e 2
(ii) when
M2 > T'™M

the semi-infinite target relations are valid.

Using these constants in eq. 6, one obtains an ex-
plicit expression for C(M,M,) in terms of M

n=2 1

C(M,M,) ¥ C(M,=) = (2-n)TA MY, TTM < M, (8)

For impacts between two particles where T'M is greater

than M2, we take the total available mass M + M2 to be equal Me

M =M*+ M2 (9)

and obtain

n-2

COM,M,) = (2=m)A"2 (M + M)M"TE, 1M > M, (10)

2

This relation, together with eq. 2 and 8 defines the model
crushing law employed in this study.
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Approximate numerical values for T and A, based on
hypervelocity impact experiments into basalt by Gault et al
(1963) are given in Table I at several impact velocities.

TABLE T
V(Km/sec) r A
5 1.3 x 102 1.3 x 10
10 5 x 10° 5 x 10
15 1.1 x 103 1.1 x 10°
20 2 x 103 2 x 10°

The value of T' is more difficult to estimate. Gault
(private communication) observed that a basalt particle is com-

pletely shattered by a projectile 10-3 times its mass, moving
at 2 km/sec. Since T is about 20 at this velocity,

rr=50r

for this case.

3.0 COLLISIONAL MODEL

In this section the mathematical formulation of the
evolution of a system of colliding particles is developed. To
be specific, given that f(m,t)dm is the number of particles
having a mass between m and m + dm at a time t, this function
will change as a result of collisions between the particles
because many new particles are constantly created and others
are destroyed. The system itself possesses a "sink" in the
sense that sufficiently small particles are removed by the
Poynting Robertson effect and still smaller ones are almost
instantly blown out of the solar system by radiation pressure.

In what follows, the system will be assumed suffi-
ciently random that an effective average collisional velocity
is meaningful; the collision cross-section is taken as the
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cross-sectional area of the colliding particles. This assump-
tion is equivalent to the process of finding the motion of the
center of mass of the system of particles, then switching to
the center of mass coordinate system; the particle velocities
will then be random, to a first approximation. Here we have
invoked the analogy of a system of gas molecules in a box,
when the box itself undergoes translation or rotation.

Assuming spherical particles, the probability of col-
lision between two particles with radii ry and r, is propor-

tional to n(rl + r2)2. In what follows, the particle masses

rather than particle radii will be taken as the independent
variable and whence, the probability of collision per unit time
between two particles is proportional to

2
1/3 1/3
K(Ml + M, ) (11)

where
1/2 }2/3

K = V[3n /o

Here V is the average relative velocity of the particles and »p
is the material density of the particles. K will be taken to
be a constant, to a first approximation. This means that the
velocity distribution is taken to be independent of the mass
distribution and all particles are assumed to have the same
material density. If the expression, eq. 11, is multiplied by
the number density per unit volume of particles in the mass

range M2 to M2 + dM2, the resulting expression

2
RERVE

1 5 f(M2,t)dM2 (117)

is proportional to the total number of collisions (per unit

time) of an individual particle with mass Ml with other particles

in the mass range M2

2 2
eg. 11 is the "influx" per unit time of particles in the mass

range M2 to M2 + dM2 "into" a particular object of mass Ml'

to M, + dM,. In other words, the expression
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If now the expression, eq. 11', is multiplied by the
particle number density per unit volume in the mass range M1

to M1 + dM1 the resulting expression

2
1/3 1/3
K M1 + M2 f(M2,t)dM2 f(Ml,t)dMl (11')

is the total number of collisions, per unit volume and unit
time, of particles in the mass range M, to M, + dM, with par-

1 1 1
to M, + dM,.

ticles in the mass range M 5 5

2

A collision equation defining the collective evolu-
tion of our system of particles can now be defined. The time
rate of change of the number of particles in a mass range of
m tom + dm 1s given, in a schematic form, by the following
expression (individual terms are explained below):

I
af(m,t) rate of change of the number of
st dm = | particles per unit volume and +

unit time in mass range m to
m + dm due to erosion

IT

rate of change, because of "ca-
tastrophic" collisions, of the

+ | number of particles per unit
volume and unit time in the mass
range m to m + dm

111 (12)
number of particles in the mass
4+ | range m to m + dm, created per
unit time and unit volume by
collisional crushing
t
Iv
number of particles in the mass
4+ | range m to m + dm removed per
unit time and unit volume by
the Poynting Robertson effect
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Term I is the rate of change of the number of parti-
cles per unit volume and unit time in the mass range m to
m + dm due to the fact that the masses are themselves changing
in time. This is caused by collisional processes which erode
particles into and out of the mass range m to m + dm with the
passage of time. Mathematically, the problem is to find the
rate of change of the number density of particles in mass range
m tom + dm at fixed mass, given that the masses themselves
change at a prescribed rate dm/dt. It can be shown, as 1s done
in Appendix A, that the resulting expression for Term I, is

_ 3f(m,t) _ 3f(m,t) dm 3 dm
(1) = =g T ca - fmB) g (3
'erosion

For dm/dt, which is the rate at which the mass of a particle
changes in time, we use the mass removed per unit time by
collisions with mass M not large enough to completely disin-
tegrate our mass m. The amount of mass removed during a single
collision with a mass M is, according to equation 7,

'M (14)

The number of collisions that one mass m will experi-
ence (per unit time) with particles in a mass range M to M + dM
is (cf discussion preceding eq. 11')

2
Kf(M,t)(Ml/3 + ml/3’ am (15)

The total mass removed from m (per unit time) due to
collisions with particles in the mass range from M to M + dM is

2
Kr™ f(M,t)(Ml/3 + ml/3) daMm (16)

Whence, the mass removal rate due to collisions with
a finite mass range of particles is
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2 2
%% - - Tk M f(M,t)(Ml/3 + ml/3) aM  (17)
1

For the lower limit we take particles with mass uw which
are the smallest particles present. For the upper limit we take
particles having a mass just large enough to completely break up
one mass m. As a criterion for "catastrophic" encounter, we take
(see discussion preceding eq. 8)

m=T'M (18)

as the limiting mass M still included in the integral (17).
Therefore, the expression for the mass loss becomes

m/I" 2
L M f(M,t)(M1/3 ¥ ml/3) aM (19)
u

and term (I) of the collision equation (12) is:

m/T"
2
(I) = iﬁé%;il K M f(M,t)(Ml/3 + m1/3) aM

H
m/T!

2
4 f(m,t) TK 2= M f(M,t)(Ml/3 + ml/3) daM  (20)
u

This completes our derivation of term (I) in the collision equa-
tion.

We now consider term (II), catastrophic collisions, of
eq. 12, which can be derived by noting that the probability of
collision per unit volume and unit time between two particles in
a mass range m tom + dm and M to M + dM is (cf discussion
accompanying eq. 11'")

2
£(m,t) dm £(M,t)dM K(ml/3 + M1/3} (21)
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The probability for a collision per unit volume and
unit time between a particle with mass m and some other parti-
cle in a finite mass range is then

2
2
Kf(m,t)[ f(M,t)(ml/3+M1/3) amM (22)
1

Since the effect of collisions with particles that do
not completely destroy m has been accounted for in term (I), we
evaluate the integral in eq. 22 over all "catastrophic" colli-
sions. The result is term (II):

M
[++] 2
(II) = - Kf(m,t) f f(M,t)(ml/3 + Ml/3) aMm  (23)
m/T*

where the minus sign is used to denote a particle removal pro-
cess.

Piotrowsky (1953), in an earlier study, obtained a
term similar to eq. 23. We disagree with him, however, inas-
much as Piotrowsky's formulation is equivalent to

M
—Kf(m,t) m2/3 [ £(M,t) aMm
m/T'
i.e., the collision cross-section factor (ml/3 + Ml/3)2 is re-
placed by m2/3. This approximation is invalid for M > m, and

for arbitrary distributions can introduce a serious error near
the upper limit.

Term (III) of the collision equation (eq. 12) can be
derived by noting that for each event whose probability is given
by eq. 22 there are g(m; M,M,)dm "secondary" particles produced

in the mass range between m and m + dm, where g(m;M,Mz) is the

crushing law eq. 3 and where M is the smaller one of the two
colliding masses and is assumed to be completely broken up
during impact. One, therefore, has
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2
dmK / dM_/de2 g(m;M,Mz) f(M,t) f(M2t)(M1/3 + M2l/3)

(24)

>
= Km™" dm[dM[sz C(M,M,) £(M,t) f(M2t)(M1/3 + le/?’)

which is the rate at which particles having a mass between m and
m + dm are created (per unit volume and unit time) due to the

crushing of mass during an impact between sufficiently large
particles to produce fragments of mass m, and where C(M,Mz) is

.
Ary
iven oy

.

m

The limits on the double integral in equation 24 can
be obtained by noting that the dummy M is always smaller than
dummy M2, otherwise, the argument of C(M,MZ) should be replaced

by M2,M (this follows from the definition of the crushing law,

discussed in the previous section). The lower limit of the
integral for M2 is, therefore, M. Since we are interested in

all possible collisions, the upper limit for M2 is M_. The

lower 1limit for M is defined by the condition that the largest
fragment Mb produced during impact must be equal to or larger

than m whence, by equation 7.

m < M = AM (25)

and

M > m/A (26)

Using appropriate upper limits and dropping the dif-
ferential dm, equation 24 becomes term (III) in the defining
equation 12:
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n=-2 A2 X

(III) = K(2-n)m™ " A

M_/T! T'M 5
x Jr dMJf dM2(M+M2)(M1/3 + M21/3) M"_Zf(M,t)f(Mz,t)
m/A M

+

M_/T M_ )
PJ( dMJ’ sz(Ml/3 + M21/3) Mn—lf(M,t)f(Mg,t)
m/A I''M

o R )

) © 2
+ J dMJ dM2(M+M2)(Ml/3 + M 1/3) M”‘2f(m,t)f(M2,t)
M_/T' M

2

(27)

where the first and third integrals refer to catastrophic colli-

sions between masses M and M2 such that both are totally disrup-
ted

r'M > M, (28)

the second integral refers to erosive collisions between masses
M and M2 such that M2 behaves as an infinite target

and the mass redistributed is just TM.

The third integral refers to catastrophic collisions
between objects in the mass range M_/T' to M_. This means that

for test masses m

m/A > M_/T'

the first two integrals are zero and only the third integral is
retained¥ with lower limit of m/A replacing M_/T'.

%¥See Appendix B, for details.
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The last term (i.e., term (IV)) in eq. 12 is the rate
at which particles are being lost due to the Poynting Robertson
effect (Robertson, 1937) due to radiation damping. According
to Robertson's analysis, a particle in an approximately circular
orbit will move from a mean distarce from the sun of RO(AU) to

a distance of R(AU) from the zurn, during a time t given by
t = lO8 (Ro2 - R2) ml/3 years (29)

where a particle specific gravity of 3.5 has been assumed, and
where m is expressed in Kilograms.

For an effective particle lifetime one may take the

time required for moving 1AU closer to the sun (R = RO -1

although this is arbitrary to some extent), in which case, one
has

T = 108 (2RO - 1) ml/3 years

If Ro = 1AU, then 1 becomes

T = 108 ml/3 years = T ml/3 (30)

The rate at which the population per unit volume of
particles having a mass between m and m + dm decreases in time
can then be represented approximately as

-1/3
(IV) = - f(T,t) _ -l f(m,t)

T
O

(31)

where use has been made of eq. 30, and where the differential
dm has been dropped.

4.0 SOLUTION OF THE COLLISION EQUATION FOR SMALL PARTICLES

The collision equation derived in the previous sec-
tion is complicated. Simplifications can, however, be obtained
by restricting one's attention to special cases. We shall, in
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what follows, consider special cases where the collision equation
can be solved. We will limit our attention to the evolution of
particles having a mass m very much smaller than M_, but very

much larger than u which is the smallest particle mass present
and is determined by the radiation pressure limit.

More specifically, particles with a mass smaller than
I''u will no longer be eroded according to this model, since any
collision they experience will be 'catastrophic'. Our present
model is, therefore, expected to be valid only for masses m in
the range

T'y << m << AM_/T (32)

where T'uy is the largest mass completely disrupted by a colli-
sion with the smallest surviving particle p; this means that a
mass < I''y is completely disrupted by every collision and the
erosion term for particles in this mass range does not apply.
AMw/F' is the largest mass that can be created by a catastrophic

collision and therefore the particle creation term (III) does
not apply to the distribution of masses greater than AMw/r'.

The collision eq. 12 expresses the time rate of change
of the particle number density function in terms of the individ-
ual collision processes. We shall choose the simplest possible
case and as a first approximation assume that the particle dis-
tribution has reached "steady-state", i.e., the rate at which
particles having a mass m are produced is balanced by the rate
of their removal by collisions.

Mathematically, the steady-state assumption implies
that a source exists which steadily regenerates the large objects.
This appears to be the case with cometary meteoroids, since comets
are believed to be constantly giving off particles. While the
rate of generating particles by comets as a function of particle
size is not precisely known, one has some information on the sub-
ject by considering stream meteors which are believed to have been
generated comparatively recently.

Radio work indicates that the abundance of faint
meteors in streams is small by comparison with the background
sporadic flux, while nearly half of the bright photographic
meteors move in identifiable streams (Whipple, 1963). 1It,
therefore, appears that the meteoroids generated by comets are
comparatively "rich" in large particles and poor in small ones.
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We shall, to a first approximation, assume that the only effect
of the meteoroid production by comets on our model distribution
is one of keeping f(Mm) constant in time, i.e., keeping the

"top masses" of the distribution constant.

In the case of asteroids, the situation is more specu-
lative since large asteroids aremt believed to be regenerated
at the present time. If, however, we assume that the processes
of particle creation by fragmentation and particle removal by
collisions are approximately equal then the present theory is a
reasonable first approximation. Among the catalogued asteroids,
certain groups exist (Hirayama groups) that are believed to have
resulted from collisions by "parent" asteroids. Such collisions
between very large asteroids are believed rare, with a lifetime
of perhaps many millions of years. As the size of the asteroids
diminishes, however, their frequency increases with a correspond-
ing increase in the number of collisions.

We now turn our attention to the individual terms of
the collision equation (eq. 12). Their properties will be dis-
cussed in detail and appropriate simplifications will be intro-
duced.

Term (I) (eq. 20) of the collision equation expresses
the rate of change due to erosion in the particle number density
function and has the mathematical form:

m/T!

2
(1) = a—ﬁﬁﬁ—)—rK J/ Mf(M,t)(Ml/3 + m1/3) aM
u

+

f(m,t)TrK —i—z- £
(r*)

2
?—nt) [(r')'1/3 + 1] n/3  (33)

-+

m/T* ,
£(m,t)TK —% m~2/3 [ Mf(M,t)(M1/3 + m1/3)dM
n

where the last two terms are the result of carrying out the par-
tial differentiation with respect to m, as indicated in eq. 20.
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Since T'' is of the order of lO3 to 10“, the colli-
sional cross-~sectional area can be taken to be

2
K(Ml/3 + ml/3 X Km2/3 . (34)

The error thereby committed in the upper limit is,

(m )1/3 + ml/3

2 .
T _ m2/3 = m2/3 (21'—1/3) n 2/3

~ 10% of m (35)

and the error committed in the lower 1imit is completely negli-
ble. We therefore write, approximately

~m/T!

(1) % égégliHK m°/3 J MF (M, t)dM
u

+ £(m,t) £(m/T',t) TK/(r")2 m>/3 (36)

m/T"'
+ £(m,t)TK (2/3) m~1/3 [— Mf(M,t)dM
4

where the above approximation is a slight "under estimation" of
the process to the extent that the geometrical cross-section of
the smaller particle is neglected. The approximation is, how-
ever, far less serious than may appear on the surface, because
the cross-section

2
K(M1/3 . m1/3)

includes the case of "grazing incidence"; and, therefore, over-
estimates the probability of mass removal during cratering. We
are, therefore, satisfied that equation (36) defines process (I)
with reasonable accuracy.
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We now consider the rate of "catastrophic" collisions
given by term II of the collision equation (eq. 23):

(- -]

M

2

—Kf(m,t)‘[‘ f(M,t)(m1/3 + M1/3) aM (23)
m/T!

Using a power law steady-state distribution
f(m,t) = f(m) = Am~© (1)

and eq. 23 integrates to give (multiplying out the squared
parenthesis):

ka2 m—a{%2/3ﬁw —atl _ (1 ye-l m—a+l](_a+l)—l

o

+ oml/3 [Mm—a"'br/?)_(r. )a-u/3m-a+u/3](_a+4/3)-1 (231)

+ [Mm—u+5/3 - (P' )G_B/Bm-a+5/3] (_a+5/3)-1}

AM
provided that « ¢ 5/3, 4/3 or 1. If now a > 5/3 and T

this expression simplifies to

L]

_ KA2 - m-a+5/3

X constant

and if
AM_
a < 5/3 , Tm * ©
one obtains, instead,
- KA2 m ¢ Mm-cﬁ'l’:'/3 X constant.
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It therefore appears that for a population of a power
law type the collisional lifetime of an object is only a func-
tion of the more numerous small objects for a population index
a > 5/3 and for a population index of a < 5/3 it is given by
the -a + 5/3 power of the largest object in the sample.

The collision equation (eq. 12) can be further simpli-
fied when the relative importance of radiation damping (term IV)
is considered. We shall show, in what follows, that this term
can be neglected altogether by comparison with the influence of
collisional processes on the particle number density function.
The lifetime of a particle limited by the Poynting Robertson
effect is, according to equation 30,

= 108 /3

T m year (38)

PR

where the subscript PR stands for Poynting Robertson and where
m is the particle mass in Kilograms.

The lifetime of a particle of mass m due to catastro-
phic collisions by another particle with mass m/T' or larger,
can be estimated by noting that

TCC = M (39)

where the subscript CC stands for catastrophic collisions, N is
the flux of particles having a mass of m/T'' Kg or larger per

meter2 sec and a is the cross-sectional area of the particle in

meterz. Taking T' % 10”, particle density of 103 kg/meter3 and
the NASA model¥ cometary flux of

N = 10'16'6 n~1 (40)
one obtains
6 1/3
Y
oo ™ 2 x 10" m years

where m is the mass in Kg. This Tog is 100 times shorter than
T
PR"

* Natural Environment and Physical Standards for the Apollo
Program, April 1965 - revised.




Gl U EGh N & E ) T Sh h B &G O G G e e Em e

BELLCOMM, INC. - 20 -

Another check on the relative importance of radiation
damping may be performed by estimating the lifetime of a parti-
cle 3o limited by erosion. The mass erosion rate of a cometary

particle has been estimated (Whipple, 1963) as 7 x 10-12
gm/cmgsec. This means that we may take, in MKS units,

dm . _ b x Yrr° = - b x 5 x 10°2 me/3 (41)

where dm/dt is the rate of mass loss due to etching, b is the
rate of mass loss per unit surface area and where a particle

density of 10° Kg/m> (1 gm/cm>) has been assumed.

This equation is easily solved for the time TR Te-
quired to erode the particle:

1/3
5b x 10
_ -12 2
Using b = 7 x 10 Kg/meter™ sec, we get
TN 1013 sec = 3 X 106 ml/3 year (43)

again yielding a process two orders of magnitude faster than
radiation damping. These results are in agreement with an
earlier discussion by Whipple (1963) where he treated the life-
time of photographic meteors.

We are, therefore, justified in disregarding term IV
in the collision equation for particle distributions near earth.
In order to avoid the introduction of special and arbitrary
assumptions, the status quo of the meteoroid environment in the
near earth space will also be extended into the asteroidal belt
under the present model; this means that the lifetime of the
asteroidal debris is taken to be their collisional lifetime
rather than their lifetime due to radiation damping. Term IV
in the collision equation is thereby disregarded altogether.
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Using the steady-state assumption and equations 36,
23 and 27, substituted into equation 12, the collision equation
can now be expressed as:

m/T!
M) o o gy?/3 p 2Lm) J ue (n)a
H
m/T'
+ (2/3) £(m)tK m~1/3 Mf(M)dM
M
+ £(m) r(r")7% K £(m/r') n?/3
M 2
- K £(m) j f(M)(ml/3 ¥ M1/3) am (4u)
m/T'
M _/T! ~T'M
+ K(2-n) m™ " A2 x J’ dM Jr aM, Q(M,M,,m)
m/ A M
Mm/r' M°°
+ rJf am J’ dM, R(M,M,,m)
m/ A r'm

MQ) Moo
f dMm j am,, Q(M,Mz,m)
M /T M

where the time dependence has been dropped from f(m,t) and where

+

Q(M,M2,m)

1/3
(M+M2) (M + M2

2
1/3) M2 £(M) (M)

(45)

2
R(M,M,,m) = (Ml/3 + M2l/3) M1 £(M)F (M)
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Seeking a simple power law solution of the form m %

we take

f(m) = Am™ % (46)

AM

©
m <<

PV

and substitute it into equation 12.

Performing the integrations, one obtains,

0 = KIA_(2/3-a) m—a—l/3[km/r,)2—a _ u2-a]

+ KP(T')G_2 A2 m-2a+5/3 (47)

KA (r1)® L _—2a+5/3
o - 1

+ KA® ¢' m~29+5/3

provided that both of the following inequalities are satisfied:

a > 5/3 (48)
1
@ > 5 (n + 5/3) (49)

The quantity C' is a lengthy expression involving a, n, I', T'
and A.

If o« < 5/3, no solution of a population index type
exists, as can easily be shown; the dynamic processes of parti-
cle creation and catastrophic collision then depend on the
largest masses M, present in the distribution and the linearity

-2a+5/3

of eq. 47 inm is destroyed. A similar thing happens

when o > 2; the term p° % in the first term of eq. 47 will
dominate because p << m/T' and we obtain, for this erosion pro-
cess

—(!—1/3 (0

const x m —_uz'“) _ (50)
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Equating each power of m in eq. 47, one obtains

-2a+5/3 = - a - 1/3

resulting in

yielding the absurd result that if o > 2, then a = 2, indicating
that for o > 2 no solution of a population index type exists.

Experimental work by Gault et al (1963) on hyper-
velocity cratering into basalt indicates that n % 1.8. Some
cases with slightly higher n (but still less than 2) have been
observed together with lower values for n. For very small
particles, the value for n appears to be still lower (Gault et
al 1965, Gault and Heitowit, 1963). While these experiments
refer to basalt only, the writer is not aware of any other
determination of the size distribution for crushed debris
during hypervelocity cratering. It is a significant but not
necessarily serious mathematical limitation of the present
model that if the parameter n is equal to or is larger than two,
the form of the crushed particle distribution changes, as can
be seen from equation 12 and 13 when n > 2 is substituted. 1In
that case, the quantity C(M,=) becomes, approximately

(n-2)M
C(M, =) = uz-ne - (”;Sng (51)

and the discussion in this paper is no longer applicable.

We now consider, briefly, the time dependent colli-
sion equation (eq. 44, with 3f/3t % 0). When a separable popu-
lation index type of solution

f(m,t) = A(t) m™°
is substituted into eq. 44, we obtain (with the help of eq. 47)

~-a dA(t)
m dt

constant x A2(t) X m_2°‘+5/3 .
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This equation is satisfied only if a = 5/3. It can, however,
be shown readily that the particle creation term III (eq. 27),
in this case becomes (after iteration with o = 5/3 and n > 5/3).

A2(t) x (constant x m " + terms in m—5/3 and m_5/3 X &n m)

and the collision equation is obviously not satisfied. We
therefore conclude that no separable population index type of
function exists (other than zero) which satisfies the time
dependent collision equation employed in the present study.

It is therefore concluded that within the present

a

model, a population index type solution exists if and only if
the population has reached a steady-state distribution and that
T'y << m
AM
0
m << e v @ (52)

2 (n+5/3) X 1.75 < a < 2

in which case eq. 47 reduces to

~-2a+5/3

0 = constant x m

(53)

In this equation, the constant factor is an algebraic as well
as transcendental expression in a and the physical parameters.
Knowledge of the latter then permits one to calculate the
former. Such a study together with a discussion of the sta-
bility of the solution is presently under preparation.

An interesting property of the solution in the mass
range specified by eq. 52 is that, the particular mass ranges
which dominate dynamically the number density of objects in
the mass range m to m + dm are:
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Term (I): (Erosion) is "dominated" by objects of mass m/T'

Term (II): (Catastrophic collision) is "dominated" by ob-
jects of mass m/T' (53)

Term (III): (Particle creation) is "dominated" by masses of
the size m/A impacting masses of the size I''m.

In other words, the dynamics of the collisional pro-
cess described by the present model is to a first approximation
independent from the size of the "cutoff" objects w and M _.

This is an important conclusion. It indicates that slow deple-
tion of the largest objects (e.g., asteroids) will not invali-
date the collisional model in a first ord?r §O§ approximation)
INMMao(t o
———14—; where Mm(t)

designates the mass of the largest objects present as a function
of time.

for masses within the range I''n << m <<

5.0 APPLICATION TO THE NEAR EARTH METEORQOID ENVIRONMENT

The results of this paper are compared with experimen-
tal information in Figure 1. The figure is a plot of the ex-
ponent a as obtained from the present model

1.7 < o < 2 (54)

versus particle mass.

The small mass limit of the model is

m>> 'y . (55)

Gault (private communication) observed that a basalt particle

is broken up catastrophically by a projectile 10-3 times its
mass moving at 2km/sec. Since meteorocids move with a relative
velocity of about 15 to 20 km/sec and since cometary particles
are believed to break up more easily than basalt, we take ten-
tatively

It on 102 (56)
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The limiting mass with a density of 103 kg/m3 not

blown away by radiation pressure is about 10"15 kg. We there-
fore have,

m >> 10—10 kg (57)

This means that for masses

m ¥ 10710 ke (58)

the present model is not applicable.

It is interesting to note that in precisely this range
l of masses a definite change in the distribution is observed
(Figure 1). The "slope" of the logarithmic distribution changes
to smaller absolute values. Near the radiation pressure limit,
l the slope should move toward a positive value, indicating that
the number density of particles increases with increasing mass
and at the radiation pressure limit we expect a singularity
l (a » =) reflecting the fact that no particle should exist having

a mass equal to the radiation pressure limit or smaller.

For masses
m > 1077 ke

the radar results are a lower bound in the range of values for
-a obtained in this model. The value of o = 2.34 suggested by
Hawkins and Upton (1958) is somewhat high, but another analysis
(Dohnanyi, 1966 and 1967) of comparable photographic meteor
data (McCrosky and Posen, 1961) indicates a slope o = 2, in
agreement with the present model and irons (Hawkins, 1960) have
a = 1.5 which is somewhat low.

It is significant that the range of values for a in
the present model includes the experimental value of the popu-
lation index as its upper 1limit. It is strongly implied that
cometary meteoroids undergo the collisional processes discussed
in this paper and our model is a first approximation to theilr
distribution.
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6.0 APPLICATION TO ASTEROIDAL DEBRIS

This section is a comparison of the present results
with the distribution of the known asteroids. While a detailed
comparison requires a discussion of the time dependent problem
(because the largest asteroids are no longer being created)
which is beyond the scope of the present study, it is interest-
ing to note the comparison between the present results and
observation.

Figure 2 is a logarithmic plot of the cumulative
number of catalogued asteroids as given by Kuiper et al (1958)
versus absolute photographic magnitude. An albedo of .1 and a

density of 3.5 x 103 Kgm/m3 have been assumed in associating an
asteroidal mass with a given absolute photographic magnitude g.
The following relationship can then easily be derived

- 102&—.6g

(59)

where m is in Kg.

a least squares fit to the unnormalized distribution where the
3 largest asteroids have been disregarded. The population index
a of the fit is

o = 1.80 + .04 (60)

The dashed line indicates the "true number" of asteroids esti-
mated* by Kuiper et al on the basis of their analysis of selec-
tion effects influencing the probability of detection. The
reason why the distribution approaches a horizontal line for
sufficiently faint asteroids is believed to be due tTo such an
effect.

¥The "true number" of asteroids has been estimated by
Kuiper et al over a much larger range of asteroids (to an
absolute magnitude of g = 13), but in view of uncertainties,
we only consider the estimated distribution for g < 11.

l The straight line, in this figure, is the result of
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It can be seen, from the figure, that a straight line
is a good fit to the data in the region

6 <eg=<11 (61)

if we correct the distribution for selection effects in the

region of 10 < g < 11 as suggested by Kuiper et al. The fit
is good, even if data in the region

6 < g < 9.5 (62)

are only used. As seen from Fig. 2 the three largest asteroids
deviate from the trend exhibited by the 647 others considered.
Since for large asteroids no sources of generation are known to
exist, the steady-state assumption could hold only for masses
considerably smaller than the largest ones present. Thus, the
distribution of the known asteroids appears to be consistent
with the results of the present model.

The distribution of the lunar craters* yields, on the
average, a population index
1.6 < a < 1.7 (63)
which is close to but a trifle lower than the result
1.75 < a < 2 (64)
obtalned in this study.
Hawkins (1960) has studied the distribution of meteo-

rites and obtained

a =2 and a = 1.5 (65)

%#See, for example, Fielder (1963), Dodd et al (1963),
Brinkman (1966) Hartmann (1964) and Baldwin (1964).




4

BELLCOMM, INC. - 29 -

depending on the kind of meteorite (i.e., stones or irons, re-
spectively). Stones are therefore seen to have a population
index in agreement with the present model and irons have a some-
what lower population index.

7.0 CONCLUSION

A collisional model of interplanetary debris is formu-
lated and solutions of a population index type are sought, i.e.,
a solution for the number density of the time independent form

-Qa

f(m)dm = m ~ dm (66)

is substituted into the collision equation (eq. 12).

It is found that eq. 66 indeed solves the collision
equation in the mass range of

'y << m << AM_/T! (67)

provided that the population has reached a steady-state dis-
tribution. The quantity u is the largest object completely
shattered by a particle of mass T and AM_/T' is the largest

fragment produced when an object having a mass M_ is "cata-
strophically" shattered.

The population index o must satisfy

L (n45/3) = 1.T5 < a <2 (68)

beyond the range of «, the collision equation (eq. 44) has no
population index type solutions. For o > 2 erosion by the
smallest particles dominates and depletes the mass distribution

with time. TFor a < % (n+5/3) collision products from the most

massive objects cause evolution of the mass distribution with
time. It is furthermore shown that, if the population is
evolving rapidly so that af(m,t)/3t # 0 in eq. 44, no separable
population index type of solution exists, that would satisfy
the time dependent collision equation.
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Application of the present results to cometary mete-
oroids yields satisfactory agreement in both o and the trend of
the distribution near the small mass end of cometary meteoroids.
This is indicated in Figure 1. We note that the population in-

dex for these small particles obtained experimentally is in the
neighborhood of

o = 2 (69)

i.e., at the upper 1limit of o as obtained in this study.

A least squares fit to the distribution of asteroids
catalogued by Kuiper et al (1958) yields (Fig. 2)

a = 1.8 + .04 (70)

which is within the range of values for a permitted by this
model.

Lunar craters, having a distribution with a popula-
tion index in the approximate range

1.6 < o < 1.7

are a trifle below the lower 1limit of o obtained in this study.

The result of this model are in reasonable agreement
with the distribution of stony meteorites as obtained by
Hawkins (a = 2) and the iron meteorites (a = 1.5) have a rather
low population index.

LS AN
1011-JSD-jdc J. S. Dohnanyi
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GREEK CHARACTERS

population index.
threshold mass of finite target completely
shattered, per unit projectile mass.

= '
M2 r'mM

where

M

A.l2

is the target mass and M is the projectile
mass.

total ejected mass from a semi-infinite target
per unit mass of the incident particle.

Me = T'M (eq. T)

where M is the mass of the incident particle.
mass of largest fragment per unit mass of

incident particle.

M, = AM (eq. 7)

population index of ejected particles, (see
eq. 2).

mass of smallest object in the solar system
not blown away by radiation pressure.

material density of the particles.

particle lifetime.
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C(M,M,)

f(m,t)dm

g
g(m;M,Mz)dm

k

<l

LIST OF SYMBOLS

particle cross-sectional area (m2).
coefficient, defined by eq. 41.

normalization coefficient of the comminu-
tion law.

particle number density function, i.e.,
number of particles in the interval m to
m + dm per unit volume of real space at
a time t.

absolute photographic magnitude.
comminution law for ejecta (eq. 2).
parameter, equal to V(Bnl/z/Mp)2/3.
particle mass (in Kg).

mass of the largest ejected fragment.

total ejected mass during cratering by
impact.

mass of largest object in the distribution.
particle radius.

distance from the sun in AU.
time.

average relative velocity of colliding
particles.
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APPENDIX A

The purpose here is to derive an expression for the
partial derivative with respect to time of the particle number
density function due to the process of erosion (i.e., term I

in the collision equation).

f(m,t)dm

More specifically, given that:

is the number of particles having a mass in the range m to
m + dm at a time t, and that the masses change with time

according to the relation

The problem is to find

lim f(m,t+dt) - f(m,t)

dt-+0 at

due to the process defined by eq. A-2.

(A-1)
(A-2)
"fgi‘;ﬂ) (A-3)

In order to obtain an expression for eq. A-3 we con-

sider the following equalities:

f(m,t)Am = number density of particles per unit
volume in the mass range m tom + Am

(A-1)

f(m,t)g(m,t)dt = number of particles (per unit

volume) which have left the mass range

(A-5)

m to m + Am during a time dt

-f(m+Am,t)E(m+Am,t )dt = number of particles (per unit
volume) which have "entered" the
mass range m to m + Am during dt

provided that Am>g(m+Am,t)dt=dm.
Am is arbitrary,

Since, however,

(A-6)

we choose Am such that it satis-
fies this condition.
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Appendix A (cont'd)

Using eq. A-3, 5 and 6, we have

3f(m,t) Am = lim ~f(m+Am,t)&(m+Am,t)dt+f(m,t)E(m,t)dt (A=T)
at at-»0 dat

Since Am can be taken to be small, we can write

f(m+Am,t) = f(m,t) + 32%%;31 Am (A-8)
and

E(m+Am) = £(m,t) + AE%%LEL Am (A-9)

Substituting eq's A-8 and 9 into A-7 one has, after
expanding the product and dropping the term in e

af§$,t) = %%-[f(m,t)&(m,t)]= %% [f(m,t) %%] (A-10)

which is the desired result.
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APPENDIX B

This appendix is a discussion of some of the proper-
ties of the integrals occurring in term III (eq. 27) of the
collision equation.

First we derive the limits of integration of the
expression eq. 2U4:

Km_n[dedM2 P(M,M,,m) (B-1)

Q(M,Mz,m) when M > M2/P'

where

P(M,M2,m)
(B-2)

R(M,M2,m) when M < M2/r'

with Q and R given by eq. 46 in the text.

We first note that we want to integrate over all M,

and M2 for
M < M, (B-3)
such that particles of mass m are produced.
This means that
M <M, <M (B-4)
and
Doowm<m, | (B-5)
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Appendix B (cont'd)

Since, however, the value of the kernel under the
integral eq. B-1 has the dependence indicated in eq. B-2, some
additional restrictions exist. The situation is indicated in
Fig. B-1, which is a plot of the regions of integration in M
and M2. Dashed lines through the origin are the loci of points

where

M, = T'M (b-6)

and

=
1}
2

I, = M (B-7)

These lines separate the M, x M space into regions (with the

2

bounds on M and M2 indicated) with the following significance:

Region 1, M2 <T'M P =Q
Region 2, M2 >T'M P =R (B-8)
Region 3, M2 < T'M P =Q

whence, integrating over the various regions, the integral eq.

B-1 becomes
M_/T!'
”[dedM2P=Km‘” de
M
M_/T' M_ M_
+rf dm dM2R+f f
m/ A r'M M_/T!

provided that

(B-9)

m/A < M_/T" (B-10)

as can be seen from the figure.
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Appendix B (cont'd)

Eq. B-9 overestimates the mass production process at
the lower 1limit in region 1 inasmuch we have included processes
where two objects, both having a mass of m/A, will create frag-
ments of the size m which is an absurd result. A more detailed
treatment would consider the precise expression for the mass of
the largest fragment when two objects of similar mass collide.
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